

First Year B.Sc (MRT) Degree Regular/Supplementary Examinations
March 2025

Mathematics

Time: 3 Hours

Total Marks: 100

- Answer all questions to the point neatly and legibly • Do not leave any blank pages between answers • Indicate the question number correctly for the answer in the margin space
- Answer all parts of a single question together • Leave sufficient space between answers
- Draw table/diagrams/flow charts wherever necessary.
- The use of a simple calculator is allowed, but using scientific calculator or sharing any calculator is strictly prohibited under any circumstance.

Essay

(2x20=40)

1. a) The mean of the following distribution is 2.6. Find the value of k .

Values x	0	1	2	3	4	5
Frequency f	3	3	k	7	$k - 1$	4

b) Solve the system of equations

$$\begin{aligned} 2x + y - z &= 3 \\ x + y + z &= 1 \\ x - 2y - 3z &= 4 \end{aligned}$$

using Cramer's Rule.

2. a) Using Simpson's rule evaluate

$$\int_0^2 \sqrt{1 + e^x} dx$$

b) Evaluate the integral

$$\int \frac{\sec^2 \sqrt{x} \tan^2 \sqrt{x}}{\sqrt{x}} dx$$

c) Express $(1 + i)^{18}$ in the form $a + ib$.

Short notes:

(8x5=40)

- Find $\text{curl}(\vec{F})$, where $\vec{F} = x^2 z \hat{i} + (e^y + xz) \hat{j} + xyz \hat{k}$. What is $\text{div}(\text{curl}(\vec{F}))$.
- If $r^2 = x^2 + y^2 + z^2$, find $\text{grad}(\frac{1}{r})$.
- Find the value of $\tan(\frac{\pi}{8})$.
- Show that

$$\cos 2x \cos\left(\frac{x}{2}\right) - \cos 3x \cos\left(\frac{9x}{2}\right) = \sin 5x \sin\left(\frac{5x}{2}\right).$$

- Find all the cube roots of i .
- Consider a computer system with Poisson job arrival stream at an average of 2 jobs per minute. Determine the probability that in any one minute interval there will be at least 3 jobs.
- Find the number of numbers greater than 10 those can be made using the digits 1,2,3,4 and 5.
- Find the solution $y(x)$ of the differential equation

$$xy \frac{dy}{dx} = (x + 2)(y + 2)$$

such that $y(1) = -1$.

(P.T.O)

Answer briefly:

(10x2=20)

11. Find the value of n if

$$3^{-7} \times 3^{2n+3} = 3 \times 9^5 \div 3^5.$$

12. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

13. Find

$$\lim_{x \rightarrow 9} \frac{9-x}{3-\sqrt{x}}.$$

14. Find $\hat{i} \times (\hat{j} \times \hat{k}) + \hat{j} \times (\hat{k} \times \hat{i})$.

15. Find the angle between two vectors $3\hat{i} + 4\hat{j} - \hat{k}$ and $2\hat{i} - \hat{j} + \hat{k}$.

16. Find the modulus and amplitude of the complex number

$$\frac{(1+2i)^2}{1-i}.$$

17. Three dice are rolled together. What is the probability of getting at least one '6'?

18. Prove the linearity property of Fourier Transform.

19. Find the Laplace transform of $f(t) = e^{2t} \sin 3t$.

20. Evaluate

$$\int_0^2 \sqrt{8x+9} dx.$$
